Z Score Calculator - Z Table Calculator (2024)

Use this Z table calculator to easily calculate the Z-score from a given raw score. Also computes areas under the normal curve (p-values) cut off by a given score. A table of Z scores and corresponding p-values is included, as well as the z score formula. Also calculates Z from p.

Quick navigation:

  1. Using the Z score calculator
  2. What is a Z Distribution?
  3. What is a "Z score"?
  4. Z score formula
  5. Z table
  6. Example calculations

Using the Z score calculator

The z score calculator can be used to derive a z statistic from a raw score and known or estimated distribution mean and standard deviation. If the variance is known instead, then the standard deviation is simply its square root. The output also contains probabilities calculated for different areas under the standard normal curve which correspond to a one-tailed or two-tailed test of significance. The cumulative probabilities are calculated using the standard normal cumulative distribution function (CDF).

The z statistic calculator can also be used in inverse - to obtain a Z critical value corresponding to a given probability. Simply select "Z score from P" and enter the p-value threshold in the field to obtain the standard score defining the critical region.

What is a Z Distribution?

The Z distribution is simply the standard normal distribution of the random variable Z meaning it is a normal distribution with mean 0 and variance and standard deviation equal to 1 [1,2,3]. The Z distribution with key quantiles is shown on the graph below:

Z Score Calculator - Z Table Calculator (1)

The fact that the distribution is standardized means that the quantiles are known, and that area between any two Z scores is also known. For example, 68.27% of values would fall between -1 and 1 standard deviations of a Z distribution. Similarly, just over 95% of its probability density falls between -2 and +2 standard deviations. The entire distribution density sums to 1 and just like other normal distributions it is fully defined by its first two moments. These and other qualities make it a useful tool in statistics and probability calculation of various sorts.

Our z score calculator uses the CDF of the Z distribution to find the area under the standard normal curve above, below, between, or outside regions defined by given scores. It uses the inverse CDF to calculate Z scores from p-values.

What is a "Z score"?

The z-score, also referred to as standard score and z-value is a signed real valued dimensionless quantity which indicates the number of standard deviations by which a given observed data point is distanced from the mean or expected value of a distribution. Standard refers to the fact that they are computed against the standard normal distribution (a.k.a. Z distribution) which is fully defined by its mean and standard deviation of zero and one, respectively.

Z values have numerous applications in statistical inference and estimation. Most commonly they are used in a Z-test of significance as well as confidence interval calculations [4]. They are also used in process control and quality assurance applications (e.g. six sigma). Due to Z values being standardized scores they are useful in comparing measurements across different scales which is often needed in both scientific and applied disciplines.

Z score formula

The formula for calculating a z score from a raw score from is given by the simple equation:

Z Score Calculator - Z Table Calculator (2)

Using the above formula one can easily convert a raw score from a normal distribution with known or estimated mean and standard deviation to a standard score. An online Z calculator can perform the arithmetic for you quickly and easily.

Z table

A Z table contains tabulated values of the Z distribution and their corresponding quantiles, or percentages. Since a table of Z scores can be used to judge either a point null hypothesis (e.g. the effect is exactly zero), as well as the more commonly needed composite nulls such as μ1 ≤ 0, a proper Z table should contain both types of cumulative probabilities. In the table below, a one-tailed p-value / percentile refers to the area under the standard normal curve to the right of the Z score ( P(X > z) ), whereas a two-tailed p-value / percentile refers to the cumulative probability contained in the union of the areas to the right of -Z and to the left of Z ( P(X < -|z| ∪ X > |z|) ).

Table of commonly used Z-score cut-offs for defining critical regions for normally distributed random variables:

Common Z score cut-offs
Z scoreP-value (1-tailed)Percentile (1-tailed)P-value (2-tailed)Percentile (2-tailed)
0.31860.500050.00%0.750025.00%
0.50000.308569.15%0.617138.29%
0.67450.250075.00%0.500050.00%
0.84160.200080.00%0.400060.00%
1.00000.158784.13%0.317368.27%
1.28160.100090.00%0.200080.00%
1.64480.050095.00%0.100090.00%
1.95990.025097.50%0.050095.00%
2.00000.022897.72%0.045595.45%
2.32630.010099.00%0.020098.00%
2.57580.005099.50%0.010099.00%
3.00000.001399.87%0.002799.73%
3.71900.001099.99%0.002099.98%
3.89000.00005099.995%0.00010099.990%

Note that since the standard normal distribution is symmetrical, a two-tailed p-value is exactly twice that of a one-tailed one for the same value of Z. Obviously, such a table has limited utility nowadays when it is much easier to use a free online z table calculator like ours. Refer to the documentation and graphs in our critical value calculator page for more on critical values and regions.

Example calculations

It is easy to find the Z score corresponding to a given raw score, given that one knows the mean and standard deviation of the normal distribution to which the raw score belongs. Using the z statistic formula above we can easily compute that a raw score from a standard normal distribution is equivalent to the Z score since z = (x - μ) / σ = x for μ = 0 and σ = 1.

In another example, a raw score of 1600 from a distribution with mean 1000 and variance 90,000 is given. How do we find the Z score? First, convert the variance (σ2) to standard deviation (σ) by taking its square root: σ = √90000 = 300. Then the solution is simply:

z = (1600 - 1000) / 300 = 600 / 300 = 2

This tells us that the raw score of 1600 is 2 standard deviations away from the mean. The normal CDF can then be used to arrive at whatever area under the standard normal curve is of interest. For example, to reject the hypothesis that the true value related to the observation is not lower than or equal to zero, one needs to compute

p = P(X > z) = P(X > 2) = 0.0228

which is the 2.28% percentile. For the last part one can look up the Z table for the row where Z = 2, or use a Z score probability calculator if the value is not tabulated or a greater precision is needed.

References

1 Gauss, C.F. (1809) "Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm" [Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections]

2 Laplace, P-S (1774). "Mémoire sur la probabilité des causes par les événements". Mémoires de l'Académie Royale des Sciences de Paris (Savants étrangers), Tome 6: 621–656. Translated by Stephen M. Stigler in Statistical Science 1(3), 1986.

3 Laplace, P-S (1812). "Théorie analytique des probabilités" [Analytical theory of probabilities]

4 Mayo D.G., Spanos A. (2010) – "Error Statistics", in P. S. Bandyopadhyay & M. R. Forster (Eds.), Philosophy of Statistics, (7, 152–198). Handbook of the Philosophy of Science. The Netherlands: Elsevier.

Our statistical calculators have been featured in scientific papers and articles published in high-profile science journals by:

Z Score Calculator - Z Table Calculator (2024)

FAQs

How to calculate z-score calculator? ›

To find the z-score on a regular calculator, follow these steps:
  1. Calculate the mean as (∑x) / n .
  2. Calculate the standard deviation using the easy-to-type formula (∑(x²) - (∑x)²/n) / n . The divisor is modified to n - 1 for sample data.
  3. Calculate the z-score using the formula z = (x - mean) / standard deviation .
Jul 21, 2024

What is 0.975 in Z-table? ›

This equals 0.975 (95% confidence + 2.5% tail). Find the Z-score in the Z-table: Look up the area closest to 0.975 in the Z-table. The Z-score that corresponds to this area is approximately 1.96. This is the value that indicates our data point is 1.96 standard deviations from the mean.

What is 0.005 in z-table? ›

0.995 2.575829

How do you find the z-score step by step? ›

Calculating Z Scores

Use the following format to find a z-score: z = X - μ / σ. This formula allows you to calculate a z-score for any data point in your sample. Remember, a z-score is a measure of how many standard deviations a data point is away from the mean.

How to find z critical value? ›

To calculate the critical z value for any confidence level, look for 1−α/2 value in the z table. For the 95% level, look for 0.975, not 0.95, to note the value of 1.96. Similarly, for 90% and 99% confidence levels, the critical z values are 1.645 and 2.575, respectively.

What is the original formula for the z-score? ›

The formula for Altman Z-Score is 1.2*(working capital / total assets) + 1.4*(retained earnings / total assets) + 3.3*(earnings before interest and tax / total assets) + 0.6*(market value of equity / total liabilities) + 1.0*(sales / total assets).

What is the formula for z-score for a child? ›

The z-score is the standard deviation (SD) above or below the mean. A z-score of 0 is at the apex of the curve and is the same as a 50th percentile, a z-score of ± 1.0 plots at the 15th or 85th percentiles, respectively, and a z-score of ± 2 plots at roughly the 3rd or 97th percentiles.

What can z-scores be calculated from? ›

To calculate z-scores, take the raw measurements, subtract the mean, and divide by the standard deviation. The formula for finding z-scores is the following: X represents the data point of interest. Mu and sigma represent the mean and standard deviation for the population from which you drew your sample.

What is the Z table at 90%? ›

Step #5: Find the Z value for the selected confidence interval.
Confidence IntervalZ
80%1.282
85%1.440
90%1.645
95%1.960
3 more rows

What is 99% on Z table? ›

Hence, the z value at the 99 percent confidence interval is 2.58.

What is the calculated value of Z? ›

Since the z-score is the number of standard deviations above the mean, z = (x - mu)/sigma. Solving for the data value, x, gives the formula x = z*sigma + mu. So the data value equals the z-score times the standard deviation, plus the mean.

What is 0.01 on the Z table? ›

Refer to the Z score table and find the value of the Z score or the critical value as 2.33 corresponding to the tail area or level of significance of 0.01 and the central area of 0.98. Thus, the critical value of Z 0.01 i s 2.33 .

What is the value of 0.10 in Z table? ›

Z(0.10) = 1.282 (the Z-score which has 0.10 to the right, and 0.4000 between 0 and it).

What is 0.04 on the Z table? ›

The critical value z (0.04) refers to the z-score that leaves an area of 0.04 to its right under the standard normal distribution curve. This value can be found using a z-table or a calculator's invNorm function, and is approximately +1.75 for z (0.04).

How do you find the data value of z-score? ›

There is a fairly basic z-score formula: z = x − μ σ , where x represents an observed individual's value, represents the mean, and represents the standard deviation. This formula is most often used for calculating z-scores directly, as they are very handy tools for comparing values from different distributions.

How do you find the z value in Z test? ›

The value for z is calculated by subtracting the value of the average daily return selected for the test, or 3% in this case, from the observed average of the samples. Next, divide the resulting value by the standard deviation divided by the square root of the number of observed values.

How to find zc? ›

To calculate the critical value Zc, subtract the population mean from the sample mean. Then, divide the standard deviation of the population by the square root of the sample size. Finally, divide the first result by the second result to get the critical value Zc.

References

Top Articles
Latest Posts
Article information

Author: Fr. Dewey Fisher

Last Updated:

Views: 6564

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Fr. Dewey Fisher

Birthday: 1993-03-26

Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

Phone: +5938540192553

Job: Administration Developer

Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.